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{Spacetime} SRS x K

= Geometry/topology of '‘compactified’ space K determines physics of observable space RLS,

= Many geometric/physical questions intimately tied to the metric tensor g, on a manifold,
analytic form for general K p unknown.

= Physical considerations suggest K is a six-dimensional complex Kahler manifold with a Ricci
flat metric, R, /9] = 0 - a Calabi-Yau threefold CVs,.

= Informally, to preserve conformal invariance at the quantum level, the metric should be
'scale’-invariant, where u denotes some energy scale. To leading order:
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= 4 many Calabi-Yau threefolds - each corresponds to a different 'string theory’, each vyields
different low-energy physics in R1:3. Currently have no means to decide which is 'right’

Approximation

= Variational ansatz for metric: g,;(-;0).

g : ({p} € CYy, geometric/moduli data, 0) ~ {guplptap=1,..D

= § determined by minimization of some variational functional which enforces Eq. 1.

0 = argmin £(0'), f e © c C”, D> 1.
0'co

= Great freedom in the form of g, .Z. The latter captures known mathematical properties of
the (unique) true metric.
= Generally use a 'dd®-lemma’ ansatz. Find ¢ € C°°(CY3) (v : CY3 — A, A ambient).

(w+ dd¢)" = efW fe C*°(CY3), w= 1 wrgs,

where wpg denotes the ambient Fubini-Study metric on A.
= Metrics in a given cohomology class parameterized by scalar functions on the manifold, in
turn parameterized by 6 via a neural network, o (+; 6):

§ = " grs + 00NN

arXiv:2211.09801 hep-th

D.M. Pena3 C.Mishra?4

3Mandelstam Institute for Theoretical Physics

T. Hubsch 2

“Howard University

G. Butbaia? V. Jegjjala 3

Geometry / Topology

= Geometric quantities computed via automatic differentiation w.r.t. CY coords:
0 0 0
o = (guw ~ 00p) = (I, ~ g - 0g) = ( HAMuNaFJFF'F) N

= The Chern-Gauss-Bonnet theorem relates local curvature information (gleaned from the
curvature two-form ‘R) to global topological data of the manifold X. The Chern classes c;;

?
s

enable computation of topological invariants such as the Euler characteristic,

1
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X(X)g = /X cn(R), RN, =R dz A dz".

= Sanity check: extract curvature information from approximate metric to reproduce known
topological data. Consistency is vital for phenomenology; physically important data, e.g.
Yukawa couplings are also global quantities, k = fX aNbAc, ab,cée Hl(TX).

= Differentiable computation of geometric/topological data in Jax enables usage in objective
function during optimization.

Some algebraic geometry

= Calabi-Yau spaces may be realized as surfaces embedded in complex projective space P", e.g.
the one-parameter deformation family of quartics:
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= Variation of \ parameterizes deformation of the complex structure (loosely, the 'shape’) of
X, which singularizes over the set M e {%, 1, %, 3}. We numerically investigate singular X,.

= X\ is an example of a complex structure moduli parameter. Good control of g, at arbitrary
points in moduli space is important for studying stringy topology-changing processes (flops’).

Figure 1. Deformation family of quartics (lower plane), parameterized by A € [0, o), and its Z, quotient (upper
plane). Each X, corresponds to a distinct Calabi-Yau manifold. Points where X develops singularities are marked.

= Numerically investigating topological quantities on singular X allow us to postulate + prove:

Proposition: Let Xg C X, C P3, the smooth locus of singular Xy, with associated curvature
two-form R. Denote the Fulton class of Xy by cp. If [SingX | < oo, then:
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/ &5 (R) + [SingX,| = deg e (X)) .
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Numerics

= Studying singular Xy, we numerically observe + conjecture:

A [Sing (X)) degea(R)  degey(R)
0 0 24 0
3/4 8 7.99 £+ 0.03 —16.0+0.2
1 16 —7.994+0.08 —31.94+0.3
3/2 12 0.0+£0.1 —-23.9+0.3
3 4 16.00 = 0.09 —8.040.1
Table 1. Values of Monte Carlo integrals of the possible top characteristic forms on X, & 2 std. dev.
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Figure 2. Numerical values of fXA ¢y across different regions of moduli space. Red (blue) dots arise from learned
metric using fully-connected (spectral) networks. Black dots arise from pullback of the Fubini-Study metric on P3.

Conjecture: Let X C IP? be a possibly singular K3 surface, whose smooth locus has curvature
form R. If the singularities of X are isolated, then:

[ ea®) = (e ne®) =21 =x ()

= For crepant (c1-preserving) resolution of singular M with discrete group action G, fixed point
set F, desingularizing surgical replacement N, the Euler characteristic is:

1

X(M/G) = @(X(M) — Xx(F)) + x(N) ,

here |G = Zs| = 2 and N consists of |Sing (X )| isolated exceptional P!-like divisors.

(4)

(5)

* The deg ¢1(R)? column in Table 1 yields the sum of the isolated contributions with
deg ¢ = —x(N) = —2, and the deg c(R) column gives the leading term in Eq. 5. Motivating,

Conjecture: Each X4 with M\ < 0o may be identified with a global finite quotient Y/G.

= Strangely, the learned metric appears to 'know’ enough algebraic geometry to perform a
crepant resolution for singular Xy.

Outlook

= View the metric g, as a function’'s-worth of couplings in the stringy (bosonic) nonlinear-o
model (NLoM) action:

S ~ / dVol h*P 8, X 93 X g,

Our procedure reproduces the outcome of the approximate renormalization group (RG)
flow of g, (Eq. 1) - can we generalize this to the RG flow of general NLaMs?

= RG flow — exotic heat flow — gradient flow i> optimal transport? — numerics.
= Simulations of RG flow may lead to non-perturbative approximation methods for
investigating conformal field theories in the strong coupling regime.
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