UNIVERSITYOF CAMBRIDGE

Compactification

- Geometry/topology of 'compactified' space K_D determines physics of observable space $\mathbb{R}^{1,3}$.
- Many geometric/physical questions intimately tied to the metric tensor g_{ab} on a manifold, analytic form for general K_D unknown.
- Physical considerations suggest K_D is a six-dimensional complex Kähler manifold with a Ricci flat metric, $R_{ab}[g] = 0$ - a **Calabi-Yau threefold** CY₃.
- Informally, to preserve conformal invariance at the quantum level, the metric should be 'scale'-invariant, where μ denotes some energy scale. To leading order:

$$\beta_{ab}[g] \triangleq \frac{\partial g_{ab}}{\partial \log \mu} \sim R_{ab} \implies R_{ab} = 0$$

• I many Calabi-Yau threefolds - each corresponds to a different 'string theory', each yields different low-energy physics in $\mathbb{R}^{1,3}$. Currently have no means to decide which is 'right'.

Approximation

• Variational ansatz for metric: $\tilde{g}_{ab}(\cdot;\theta)$.

 $\tilde{g}: (\{p\} \in CY_n, \text{ geometric/moduli data}, \theta) \approx \{g_{ab}|_p\}_{a,b=1,\dots D}$

• θ determined by minimization of some variational functional which enforces Eq. 1.

$$\theta = \operatorname*{argmin}_{\theta' \in \Theta} \mathscr{L}(\theta'), \ \theta \in \Theta \subset \mathbb{C}^D, D \gg 1.$$

- Great freedom in the form of \tilde{g} , \mathscr{L} . The latter captures known mathematical properties of the (unique) true metric.
- Generally use a ' dd^c -lemma' ansatz. Find $\phi \in C^{\infty}(CY_3)$ ($\iota : CY_3 \hookrightarrow \mathcal{A}, \mathcal{A}$ ambient).

$$(\omega + dd^c \phi)^n = e^f \omega^n, \ f \in C^{\infty}(CY_3), \ \omega = \iota^* \omega_{FS}$$

where ω_{FS} denotes the ambient Fubini-Study metric on \mathcal{A} .

• Metrics in a given cohomology class parameterized by scalar functions on the manifold, in turn parameterized by θ via a neural network, $\varphi_{NN}(\cdot;\theta)$:

$$\tilde{g} = \iota^* g_{\mathsf{FS}} + \partial \bar{\partial} \varphi_{\mathsf{NN}}$$

Machine Learned Calabi-Yau Metrics and Curvature

¹University of New Hampshire

²Howard University

³Mandelstam Institute for Theoretical Physics

Geometry / Topology

• Geometric quantities computed via automatic differentiation w.r.t. CY coords:

$$\varphi \xrightarrow{\partial} \left(g_{\mu\nu} \sim \partial \partial \varphi \right) \xrightarrow{\partial} \left(\Gamma^{\kappa}_{\mu\nu} \sim g \cdot \partial g \right) \xrightarrow{\partial} \left(R^{\kappa}_{\lambda\mu\nu} \sim \partial \Gamma + \Gamma \cdot \Gamma \right) \rightarrow \cdots$$

The Chern-Gauss-Bonnet theorem relates local curvature information (gleaned from the curvature two-form \mathcal{R}) to global topological data of the manifold X. The Chern classes c_i ;

$$\det\left(\mathbb{I}+\frac{i}{2\pi}\epsilon\mathcal{R}\right)=c_0+c_1\epsilon+c_2\epsilon^2+\cdots,$$

enable computation of topological invariants such as the Euler characteristic,

$$\chi(X)_{\rm E} = \frac{1}{(2\pi)^n} \int_X c_n\left(\mathcal{R}\right), \quad \mathcal{R}^{\mu}_{\ \nu} = R^{\mu}_{\ \nu\kappa\lambda} dz^{\kappa} \wedge d\bar{z}^{\lambda}.$$

- Sanity check: extract curvature information from approximate metric to reproduce known topological data. Consistency is vital for phenomenology; physically important data, e.g. Yukawa couplings are also global quantities, $\kappa = \int_X a \wedge b \wedge c$, $a, b, c \in H^1(TX)$.
- Differentiable computation of geometric/topological data in Jax enables usage in objective function during optimization.

Some algebraic geometry

• Calabi-Yau spaces may be realized as surfaces embedded in complex projective space \mathbb{P}^n , e.g. the one-parameter deformation family of quartics:

$$\mathbb{P}^{3} \supset X_{\lambda} := \left\{ p_{\lambda}(z) = 0 \right\} : \quad p_{\lambda}(z) := \sum_{i=0}^{3} z_{i}^{4} - \frac{\lambda}{3} \left(\sum_{i=0}^{3} z_{i}^{2} \right)^{2} . \tag{2}$$

- Variation of λ parameterizes deformation of the **complex structure** (loosely, the 'shape') of X_{λ} , which singularizes over the set $\lambda^{\#} \in \{\frac{3}{4}, 1, \frac{3}{2}, 3\}$. We numerically investigate singular X_{λ} .
- λ is an example of a complex structure **moduli parameter**. Good control of g_{ab} at arbitrary points in moduli space is important for studying stringy topology-changing processes ('flops').

Figure 1. Deformation family of quartics (lower plane), parameterized by $\lambda \in [0, \infty)$, and its \mathbb{Z}_2 quotient (upper plane). Each X_{λ} corresponds to a distinct Calabi-Yau manifold. Points where X_{λ} develops singularities are marked.

- Numerically investigating topological quantities on singular X_{λ} allow us to postulate + prove:
- **Proposition:** Let $X_s \subseteq X_\lambda \subseteq \mathbb{P}^3$, the smooth locus of singular X_λ , with associated curvature two-form \mathcal{R} . Denote the Fulton class of X_{λ} by c_F . If $|Sing X_{\lambda}| < \infty$, then:

$$\frac{1}{(2\pi)^2}\int_{X_s}c_2\left(\mathcal{R}\right)+|\mathrm{Sing}X_\lambda|=$$

P. Berglund¹ G. Butbaia¹ T. Hübsch² V. Jejjala³ D. M. Peña³ C. Mishra⁴ J. Tan⁴

⁴University of Cambridge

$$\deg c_F\left(X_\lambda\right) \ . \tag{3}$$

• Studying singular X_{λ} , we numerically observe + conjecture:

Table 1. Values of Monte Carlo integrals of the possible top characteristic forms on X_{λ} , ± 2 std. dev.

Figure 2. Numerical values of $\int_{X_{\lambda}} c_2$ across different regions of moduli space. Red (blue) dots arise from learned metric using fully-connected (spectral) networks. Black dots arise from pullback of the Fubini-Study metric on \mathbb{P}^3 .

form \mathcal{R} . If the singularities of X are isolated, then:

$$\int_{X_s} c_2(\mathcal{R})$$

 $\chi(M/G)$

here $|G = \mathbb{Z}_2| = 2$ and N consists of $|\text{Sing}(X_\lambda)|$ isolated exceptional \mathbb{P}^1 -like divisors.

- crepant resolution for singular X_{λ} .
- model (NL σ M) action:

 $S \sim$

Our procedure reproduces the outcome of the approximate renormalization group (RG) flow of g_{ab} (Eq. 1) - can we generalize this to the RG flow of general NL σ Ms? • RG flow \rightarrow exotic heat flow \rightarrow gradient flow $\stackrel{!}{\rightarrow}$ optimal transport? \rightarrow numerics. Simulations of RG flow may lead to non-perturbative approximation methods for investigating conformal field theories in the strong coupling regime.

Numerics

$(X_{\lambda}) $	$\deg c_2(\mathcal{R})$	$\deg c_1(\mathcal{R})^2$
0	24	0
8	7.99 ± 0.03	-16.0 ± 0.2
.6	-7.99 ± 0.08	-31.9 ± 0.3
.2	0.0 ± 0.1	-23.9 ± 0.3
4	16.00 ± 0.09	-8.0 ± 0.1

Conjecture: Let $X \subseteq \mathbb{P}^3$ be a possibly singular K3 surface, whose smooth locus has curvature

$$) - (c_1 \wedge c_1)(\mathcal{R}) = 24 = \chi (K3) .$$
 (4)

• For crepant (c_1 -preserving) resolution of singular M with discrete group action G, fixed point set F, desingularizing surgical replacement N, the Euler characteristic is:

$$= \frac{1}{|G|} \left(\chi(M) - \chi(F) \right) + \chi(N) , \qquad (5)$$

• The deg $c_1(\mathcal{R})^2$ column in Table 1 yields the sum of the isolated contributions with $\deg c_1^2 = -\chi(N) = -2$, and the $\deg c_2(\mathcal{R})$ column gives the leading term in Eq. 5. Motivating,

Conjecture: Each $X_{\lambda\#}$ with $\lambda^{\#} < \infty$ may be identified with a global finite quotient Y/G. • Strangely, the learned metric appears to 'know' enough algebraic geometry to perform a

Outlook

• View the metric g_{ab} as a function's-worth of couplings in the stringy (bosonic) nonlinear- σ

$$\int d\operatorname{Vol} h^{\alpha\beta} \partial_{\alpha} X^{a} \partial_{\beta} X^{b} g_{ab} \,.$$