Fubini study
cymyc.fubini_study
¤
Computation of the Fubini-Study metric - the unique \(U(n+1)\) Riemannian metric on \(\mathbb{P}^n\) + associated functions.
fubini_study_metric(p: Float[Array, i], normalization: Complex = jax.lax.complex(1.0, 0.0), cdtype: DTypeLike = np.complex64)
¤
Returns Fubini-Study metric in \(\mathbb{P}^n\) evaluated at p
in inhomogeneous coordinates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p |
Float[Array, i]
|
2*n real inhomogeneous coords at which metric is evaluated. Shape [i]. |
required |
Returns:
Name | Type | Description |
---|---|---|
g_FS |
array_like
|
Hermitian metric in local coordinates, \(g_{\mu \bar{\nu}}\). Shape [i,j]. |
fubini_study_metric_homo(p: Float[Array, i], normalization: Complex = jax.lax.complex(1.0, 0.0), cdtype: DTypeLike = np.complex64)
¤
Returns Fubini-Study metric in \(\mathbb{P}^n\) evaluated at p
in homogeneous coordinates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p |
Float[Array, i]
|
2*(n+1) real homogeneous coords at which metric is evaluated. Shape [i]. |
required |
Returns:
Name | Type | Description |
---|---|---|
g_FS |
array_like
|
Hermitian metric in local coordinates, \(g_{\mu \bar{\nu}}\). Shape [i,j]. Warning Note the returned metric is expressed in homogeneous coordinates and will not be of full rank. |
fubini_study_metric_homo_pb(p: Float[Array, i], dQdz_info: tuple, cy_dim: int, normalization: Complex = jax.lax.complex(1.0, 0.0), ambient_out: bool = False, cdtype: DTypeLike = np.complex64)
¤
Returns FS metric on hypersurfaces \(X\) immersed in \(\mathbb{P}^n\) evaluated
at p
in homogeneous coordinates, i.e. \([x_1 : x_2: \cdots : x_{n+1}]\). This is the
ambient FS metric in CP^n pulled back by the inclusion map: \(\iota: X \hookrightarrow \mathbb{P}^n\).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p |
array_like
|
2*(n+1) real homogeneous coords at which metric is evaluated. Shape [i]. |
required |
Returns:
Name | Type | Description |
---|---|---|
g_FS_pb |
array_like
|
Hermitian metric pulled back to \(X\) in local coordinates, \(g_{\mu \bar{\nu}}\). Shape [i,j]. |
fubini_study_metric_homo_pb_cicy(p: Float[Array, i], pullbacks: Complex[Array, 'cy_dim i'], n_coords: int, ambient: tuple, k_moduli: Array = None, cdtype: DTypeLike = np.complex64)
¤
Returns ambient Fubini-Study metric for a CICY in product of projective spaces pulled back by the inclusion map \(\iota: X \hookrightarrow \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_K}\).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p |
Float[Array, i]
|
2*(n+1) real homogeneous coords at which metric is evaluated. Shape [i]. |
required |
pullbacks |
array_like
|
Pullback tensor from ambient to projective variety. |
required |
n_coords |
int
|
Dimension of ambient combined projective space. |
required |
ambient |
tuple
|
Dimension of each projective space factor. |
required |
k_moduli |
(array_like, optinal)
|
Kahler moduli for each projective space factor. |
None
|
Returns:
Name | Type | Description |
---|---|---|
g_FS_pb |
array_like
|
Hermitian metric pulled back to \(X\) in local coordinates, \(g_{\mu \bar{\nu}}\). Shape [i,j]. Warning Note the returned metric is expressed in homogeneous coordinates and will not be of full rank. |
fubini_study_inverse(p: Float[Array, i], cdtype: DTypeLike = np.complex64)
¤
Returns analytic inverse in inhomogeneous coords using the Woodbury matrix identity.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p |
array_like
|
2*n real inhomogeneous coords at which metric is evaluated. Shape [i]. |
required |
Returns:
Name | Type | Description |
---|---|---|
g_FS_inv |
array_like
|
Inverse of Hermitian metric in inhomogeneous coordinates. Shape [i,j] |