Harmonic
cymyc.approx.harmonic.HarmonicFull
¤
Bases: Harmonic
__init__(cy_dim: int, monomials: List[np.array], ambient: ArrayLike, deformations: List[Callable], dQdz_monomials: List[np.array], dQdz_coeffs: List[np.array], metric_fn: Callable, pb_fn: Callable, coeff_fn: Callable, psi: float)
¤
Approximation of harmonic one-forms for Calabi-Yaus with an arbitrary number of complex structure moduli. Note the methods vectorise over all possible complex structure deformations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cy_dim |
int
|
Dimension of Calabi-Yau manifold. |
required |
monomials |
List[array]
|
List of defining monomials. |
required |
ambient |
array_like
|
Dimensions of the ambient space factors. |
required |
deformations |
List[Callable]
|
List of functions representing complex structure deformations. |
required |
dQdz_monomials |
List[array]
|
List of monomials corresponding to polynomial Jacobian \(dQ/dz\). |
required |
dQdz_coeffs |
List[array]
|
List of coefficients corresponding to polynomial Jacobian \(dQ/dz\). |
required |
metric_fn |
Callable
|
Function representing metric tensor in local coordinates \(g : \mathbb{R}^m -> \mathbb{C}^{a,b...}\). |
required |
pb_fn |
Callable
|
Function computing pullback matrices from ambient space to projective variety. |
required |
coeff_fn |
Callable
|
Function returning polynomial coefficients at given point in moduli space. |
required |
psi |
float
|
Complex structure parameter psi. |
required |
See also
cymyc.moduli.wp.WP
__call__(p: Float[Array, i], params: Mapping[str, Array]) -> Complex[Array, 'h_21 cy_dim cy_dim']
¤
Constructs all harmonic representatives by \(\overline{\partial}\)-exact correction to a representative from the \(H^{0,1}\) Dolbeault cohomology, \(\xi\);
Here \(\theta\) is taken to be a linear combination of a basis of sections of \(V\).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p |
Float[Array, i]
|
2 * |
required |
params |
Mapping[str, Array]
|
Model parameters stored as a dictionary - keys are the module names registered upon initialisation and values are the parameter values. |
required |
codifferential_eta(p: Float[Array, i], pullbacks: Complex[Array, 'cy_dim i'], g_pred: Complex[Array, 'dim dim'], params: Mapping[str, Array]) -> Complex[Array, 'h_21 cy_dim']
¤
Computes codifferential of \(\alpha \in H^{(0,1)}(X; T_X)\) with respect to the given metric. This is a smooth section of the holomorphic tangent bundle, \(\bar{\partial}^{\dagger} \eta \in \Gamma(T_X)\).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p |
Float[Array, i]
|
2 * |
required |
pullbacks |
Complex[Array, 'cy_dim i']
|
Pullback matrices from ambient to projective variety. |
required |
g_pred |
Complex[Array, "dim dim"]
|
Predicted metric \(g_{\mu \overline{\nu}}\) in local coordinates. |
required |
params |
Mapping[str, Array]
|
Model parameters stored as a dictionary - keys are the module names registered upon initialisation and values are the parameter values. |
required |
Returns:
Name | Type | Description |
---|---|---|
codiff |
Complex[Array, 'h_21 cy_dim']
|
Section of tangent bundle. |
wp_metric_harmonic(data: Tuple[ArrayLike, ArrayLike, ArrayLike], eta: Complex[Array, 'h_21 cy_dim cy_dim']) -> Complex[Array, 'h_21 h_21']
¤
Takes in harmonic one-form eta
and forms interior product with the holomorphic form \(\Omega\),
to yield Weil-Petersson metric via cup product,
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
Tuple[ArrayLike, ArrayLike, ArrayLike]
|
Tuple containing input points, integration weights and canonical volume form \(\Omega \wedge \bar{\Omega}\) in local coords. |
required |
eta |
Complex[Array, 'h_21 cy_dim cy_dim']
|
Harmonic representative \(\eta\). |
required |
Returns:
Type | Description |
---|---|
Complex[Array, 'h_21 h_21']
|
Weil-Petersson metric. |
inner_product_Hodge(data: Tuple[ArrayLike, ArrayLike, ArrayLike], eta: Complex[Array, 'h_21 cy_dim cy_dim'], g_pred: Complex[Array, 'cy_dim cy_dim']) -> Complex[Array, 'h_21 h_21']
staticmethod
¤
Hodge star inner product between harmonic forms eta
parameterising moduli tangent directions to yield Weil-Petersson metric,
This should agree with the cup product calculation provided the Ricci-flat metric is used.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
Tuple[ArrayLike, ArrayLike, ArrayLike]
|
Tuple containing input points, integration weights and canonical volume form \(\Omega \wedge \bar{\Omega}\) in local coords. |
required |
eta |
Complex[Array, 'h_21 cy_dim cy_dim']
|
Harmonic representative \(\eta\). |
required |
g_pred |
Complex[Array, 'cy_dim cy_dim']
|
Approximate Ricci-flat metric in local coords. |
required |
Returns:
Type | Description |
---|---|
Complex[Array, 'h_21 h_21']
|
Weil-Petersson metric. |