Moduli space
cymyc.moduli.wp.WP_full
¤
Bases: WP
__init__(cy_dim: int, monomials: List[np.array], ambient: ArrayLike, deformations: List[Callable])
¤
Base class for geometric computations over complex structure moduli space.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cy_dim |
int
|
Dimension of Calabi-Yau manifold. |
required |
monomials |
List[array]
|
List of defining monomials. |
required |
ambient |
ArrayLike
|
Dimensions of the ambient space factors. |
required |
deformations |
List[Callable]
|
List of functions representing complex structure deformations. |
required |
Notes
Here the deformations
parameter is a list of polynomial deformations corresponding
to independent tangent vectors of the complex structure moduli space - there should be
\(h^{(2,1)}\) deformations to construct the complete moduli space metric. For example, for
the deformation family of the intersection of two cubics in \(\mathbb{P}^5\),
The single complex structure moduli direction corresponds to the trilinear polynomial deformations above, and we can write down this deformation explicitly:
def X33_deformation(p, precision=np.complex128):
d1 = jnp.einsum("...a,aj->...j", jnp.expand_dims(p[3]*p[4]*p[5], axis=-1),
jnp.asarray([[-3.,0.]], precision))
d2 = jnp.einsum("...a,aj->...j", jnp.expand_dims(p[0]*p[1]*p[2], axis=-1),
jnp.asarray([[0.,-3.]], precision))
return d1 + d2
compute_wp_metric_complete(p: Float[Array, '... i'], dQdz_monomials: List[np.array], dQdz_coeffs: List[np.array]) -> Complex[Array, 'h_21 h_21']
¤
Computes the full \(h^{2,1} \times h^{2,1}\) metric \(\mathcal{G}_{a\overline{b}}\) over complex structure moduli space (the Weil-Petersson metric). This is obtained by Monte Carlo integration over the fibres of the deformation family. Letting \((-,-)\) denote the standard intersection pairing on \(H^{p,q}_{\overline{\partial}}(X)\) with \(p+q=n\):
Note that the number of integration points required is exponential in the dimension of
moduli space. See the article arxiv:2401.15078 and Mirror symmetry, Mori,
eq. (6.1). for more details.
NB: Don't vmap
this.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p |
Float[Array, '... i']
|
2 * |
required |
dQdz_monomials |
List[array]
|
List of monomials corresponding to polynomial Jacobian \(dQ/dz\). |
required |
dQdz_coeffs |
List[array]
|
List of coefficients corresponding to polynomial Jacobian \(dQ/dz\). |
required |
Returns:
Name | Type | Description |
---|---|---|
G_wp |
Complex[Array, 'h_21 h_21']
|
Weil-Petersson metric at the point |
Notes
Owing to vectorisation, this is significantly more efficient than computing individual components separately.
kappa_complete(p: Float[Array, '... i'], dQdz_monomials: List[np.array], dQdz_coeffs: List[np.array], weights=None, pb=None, output_variance: bool = False) -> Complex[Array, 'h_21 h_21 h_21']
¤
Computes full set of \(h^{2,1} \times h^{2,1} \times h^{2,1}\) Yukawa couplings (three-point function) for a CY threefold. On a fibre \(X_s\) of the deformation family, where \(s\) parameterises the moduli space, the \((a,b,c)\) component is given by,
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p |
Float[Array, '... i']
|
2 * |
required |
dQdz_monomials |
List[array]
|
List of monomials corresponding to polynomial Jacobian \(dQ/dz\). |
required |
dQdz_coeffs |
List[array]
|
List of coefficients corresponding to polynomial Jacobian \(dQ/dz\). |
required |
Returns:
Name | Type | Description |
---|---|---|
int_kappa_abc |
Complex[Array, 'h_21 h_21 h_21']
|
Yukawa couplings at given point in complex structure moduli space. |
Notes
Owing to vectorisation, this is significantly more efficient than computing individual couplings separately.
kahler_potential(p: Float[Array, '... i'], dQdz_monomials: List[np.array], dQdz_coeffs: List[np.array]) -> Complex[Array, ...]
¤
Computes Kähler potential for moduli space metric at point \(t\) in moduli space. $$ \mathcal{K}(t, \overline{t}) = - \log \int_{X_t} \Omega_t \wedge \overline{\Omega}_t.~.$$
Parameters:
Name | Type | Description | Default |
---|---|---|---|
p |
Float[Array, '... i']
|
2 * |
required |
dQdz_monomials |
List[array]
|
List of monomials corresponding to polynomial Jacobian \(dQ/dz\). |
required |
dQdz_coeffs |
List[array]
|
List of coefficients corresponding to polynomial Jacobian \(dQ/dz\). |
required |
Returns:
Name | Type | Description |
---|---|---|
K |
Complex[Array, ...]
|
Kähler potential at given point in complex structure moduli space. |